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act – In the early nineties, Joyner and coworkers intro-
d the “coupling clamp” technique in which an isolated car-
cell can be electrically coupled to either another isolated
ac cell or to an analog model cell (RC circuit).  In brief, an
ifier system does a continuous analog computation of the
nt that would be flowing between the two cells if there had
an intercellular coupling conductance Gc, and then pro-

 current inputs to the cells accordingly.  Building on this
pt, we developed the computer-controlled “model clamp”
ique, in which an isolated cardiac cell is dynamically

led in real time to a comprehensive mathematical cell model
 the phase-2 Luo-Rudy model).  With this system we have
bility to vary coupling conductance, effective size of both
l cell and real cell, and intrinsic cellular properties of the
l cell.  In courses on cardiac electrophysiology, the model

p system provides a useful computer tool to probe action
tial transfer between cardiac cells.  It can be used to assess
tions in the critical value of coupling conductance required

ction potential transfer from a real ventricular cell to the
Rudy model ventricular cell upon exposure of the real cell
g., noradrenaline.

ords – Heart, electrophysiology, ventricular cells, action
tials, gap junctions, computer simulations

I. INTRODUCTION

iac activation patterns depend on the multidimensional
bution of cellular membrane properties and intercellular
rical coupling.  The anatomical complexity of cardiac
e, however, makes it difficult, if not impossible, to use
e experiments to investigate how cellular properties and
cellular coupling influence the observed experimental
vior.  Several experimental approaches have been made
udy electrical interactions between cardiac cells as a
ion of intercellular conductance without the complexity
 multidimensional syncytium.  In the early nineties,
er and coworkers introduced the “coupling clamp”
m in which two isolated cells not in physical contact
each other can be electrically coupled at any desired
 of intercellular conductance by means of an external
it that continuously applies time-varying currents to each
ith a sign and magnitude that would have been present

e cells would have been physically coupled.  The
ling clamp system allows the rapid independent
urement of the intrinsic cellular properties and then the
sis of the effects of a wide range of intercellular
uctance values on the electrical behavior of the cells.  At
ime during the experiment, the measurements of intrinsic

cellular properties can be repeated by temporarily uncoupling
the cells.

In their initial paper [1], Joyner and coworkers documented
this “coupling clamp” technique and showed that coupling an
isolated rabbit ventricular cell to a passive resistance-and-
capacitance (RC) circuit representing an inexcitable cell with
a normal resting potential, produced a progressive shortening
of the action potential duration of the cell as coupling con-
ductance was increased with minimal changes in excitability
of the cell.  In subsequent studies, the coupling clamp tech-
nique was used to study the effect of “injury current” on an
isolated rabbit ventricular cell by coupling the cell to a depo-
larized RC circuit [2], unidirectional block between two iso-
lated rabbit ventricular cells [3], modulation of action poten-
tial conduction between two isolated guinea pig ventricular
cells by calcium current [4], production of early afterdepolari-
zations in an isolated guinea pig ventricular cell coupled to a
depolarized RC circuit [5], and calcium currents of ventricu-
lar cell pairs during action potential conduction [6]. In neuro-
science, a similar electronic circuit has been used to create an
artificial electrical synapse [7].  However, Scott [8] was
probably the first to develop an “Ersatz Nexus,” which he
used to study the interaction of two aggregates of cultured
embryonic chick heart cells with different intrinsic beating
rates.

Building on this concept, we suggested the development of
a computer-controlled coupling clamp system, as well as a
“model clamp” system, in which an isolated cardiac cell is
dynamically coupled in real time to a comprehensive mathe-
matical cell model [9].  In 1996, the first two papers on this
“model clamp” system were published [10, 11].  We had im-
plemented the model clamp technique with our previously
published model of an isolated rabbit sinoatrial node cell [12]
(“SAN model clamp”) and with the phase-2 Luo-Rudy (LR)
model of a guinea pig ventricular cell [13] (“LR model
clamp”).  In our initial experiments, the SAN model clamp
system was used to study synchronization of sinoatrial node
cells [10], whereas the LR model clamp system was used to
investigate the effects of geometrical asymmetry on action
potential conduction between ventricular cells [11].  In subse-
quent studies, we used the SAN model clamp system with
ventricular cells as an experimental model for an ectopic fo-
cus [14, 15], and with atrial cells to study atrial activation
[16], whereas the LR model clamp system was used with
guinea pig ventricular cells to evaluate the effects on action
potential conduction of modulation of L-type calcium current
[17] or exposure to an ‘ischemic’ solution [18].  Next, we ex-
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tended the LR model clamp system to include the real-time
simulation of a linear strand or a two-dimensional array of LR
model cells [19–21].  Another extension of the LR model
clamp system is the simultaneous measurement of calcium
transients in the real cell using a confocal laser scanning mi-
croscope [22].  We used the digital coupling clamp technique
to further study the synchronization of sinoatrial node cells
[23] and the facilitation of discontinuous action potential
propagation between atrial cells by fast pacing [24].  Re-
cently, as presented by Dr. Verkerk in another session at this
meeting, we used our model clamp technique to study action
potential transfer at the Purkinje-ventricular junction [25].

Other investigators have used an analog coupling clamp
circuit in studies of interactions between Purkinje and ven-
tricular myocytes [26–28], beat-to-beat repolarization vari-
ability in ventricular myocytes [29], and effects of transient
outward current inhibition on conduction between ventricular
myocytes [30].  Spitzer et al. [31] used the analog coupling
clamp technique to study electrotonic effects of electrically
coupling atrioventricular nodal cells to each other and to real
atrial or ventricular cells or passive models of such cells (RC
circuits).  Watanabe et al. [32] studied electrotonic modula-
tion of sinoatrial node pacemaker activity by atrial muscle by
coupling together sinoatrial node cells and an RC circuit as a
model of an atrial cell.  We have recently used the analog
coupling clamp ourselves to study how injury current modu-
lates afterdepolarizations in single human ventricular cells
[33] and to study the effects of cell-to-cell uncoupling on
sheep Purkinje and ventricular action potentials [34].

In this short paper, we first give a detailed description of
the coupling clamp and model clamp techniques.  Next, we
show some results we obtained when coupling together a real
guinea pig ventricular cell and the LR model ventricular cell.

II. METHODOLOGY

A. Analog Coupling Clamp

With the analog coupling clamp technique an isolated car-
diac cell can be electrically coupled to either another isolated
cardiac cell or to an analog model cell.  In brief, an amplifier
system does a continuous analog computation of the current
that would be flowing into or out of each cell if there had
been an intercellular coupling conductance Gc (siemens) be-
tween the two cells.  If V1 is the time-varying membrane po-
tential (volts) of cell 1 and V2 is the time-varying membrane
potential of cell 2, then there would be a time-varying
coupling current Ic (amperes) flowing from cell 1 to cell 2
(positive or negative) given by Ic = Gc × (V1 – V2).  Two am-
plifiers continuously compute V2 – V1 and V1 – V2, respec-
tively.  The outputs of these amplifiers go through V-to-I con-
verters and then back to the cells to provide the current inputs
to cell 1 and cell 2 that would have been conducted through a
real intercellular conductance Gc (Fig. 1A).  The specification
of the value of Gc is a combination of the fixed gain of the
V-to-I converters and the variable gain of the two amplifiers.
An analog cell model, e.g., an RC circuit, may be substituted
for one of the cells and connected to the headstage of the dual
amplifier.

B. Digital Coupling Clamp

As an expansion of the analog coupling clamp technique
we have developed a “digital coupling clamp” system that can
provide a variable effective coupling conductance between
two single isolated cardiac cells which are not actually in
direct contact with each other (Fig. 1B).  In brief, this system
consists of custom-written software running on a fast micro-

Fig. 1.  Experimental techniques to study how two cells not physically connected interact with each other when they are electrically coupled with a variable
coupling conductance Gc.  (A) Analog “coupling clamp” technique.  Membrane potentials V1 and V2 of two isolated cells, cell 1 and cell 2, respectively, are
recorded using a dual amplifier in the current clamp mode.  Two additional amplifiers continuously compute V2 – V1 and V1 – V2, respectively, using an effec-
tive gain such that the voltage-to-current (V-to-I) converters continuously supply currents Gc × (V2 – V1) and Gc × (V1 – V2) to cell 1 and cell 2, respectively, i.e.,
the currents that would have been conducted through a real intercellular conductance Gc.  (B) Digital coupling clamp technique.  Membrane potentials V1 and
V2 of two isolated cells, cell 1 and cell 2, respectively, are recorded using a dual amplifier in the current clamp mode, and sampled into a microcomputer (PC).
The coupling current flowing from cell 1 to cell 2, Ic, is computed according to Ic = Gc × (V1 – V2), and command voltages for the V-to-I converters are
generated such that these supply currents Gc × (V2 – V1) / c1 and Gc × (V1 – V2) / c2 to cell 1 and cell 2, respectively, where cell 1 and cell 2 have effective sizes
c1 and c2 times their actual sizes, respectively.  (C) “Model clamp” technique.  Cell 2 of panel B has been replaced with a mathematical model cell.  The mem-
brane potential of the real cell, V1, is recorded using a dual amplifier in the current clamp mode, and sampled into a microcomputer (PC).  The coupling current,
Ic, is computed and a command voltage is generated such that a current input –Ic/c1 is supplied to the real cell, cell 1.  The membrane potential of the model cell,
V2, is computed from the mathematical model with the current input for this cell, Ic/c2, as an additional ionic current.
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computer equipped with a fast data acquisition board.  When
coupling two single isolated cells, both V1 and V2 are fed into
the computer through the A/D converter of the data acquisi-
tion board.  Next, Ic is computed and command voltages pro-
portional to Ic (positive or negative) are generated through the
D/A converters of the data acquisition board and fed into the
V-to-I converters of the clamp amplifiers to provide the cur-
rent inputs to cell 1 and cell 2 that would have been con-
ducted through a real intercellular conductance Gc (Fig. 1B).
The system allows the effective size of cell 1 (cell 2) to be
changed by a factor c1 (c2) by replacing the current input for
this cell, –Ic (Ic), with –Ic/c1 (Ic/c2).  Thus, the effective size of
either cell can, e.g., be doubled by halving its current input.

C. Model Clamp

Replacing real cell 2 in the digital coupling clamp system
of Fig. 1B with a mathematical model of this cell, we obtain
the “model clamp” system of Fig. 1C.  In this system, the
membrane potential of cell 2 is not recorded from a real cell,
but computed from a detailed mathematical model of an iso-
lated cell.  A current input –Ic/c1 is supplied dynamically to
the real cell, cell 1, to produce the effect of the (mutual) inter-
action with the model cell, cell 2, whereas the membrane po-
tential of the model cell, V2, is computed with the current in-
put for this cell, Ic/c2, as an additional ionic current to produce
the effect of the (mutual) interaction with the real cell.

In our initial implementation, all software was compiled as
a DOS real mode application using Borland Pascal 7.0.  For
numerical integration of differential equations we applied a
simple and efficient Euler scheme with a fixed time step, ∆t.
To speed up calculations in the real-time solution of the
single cell model, we fixed the intracellular sodium and po-
tassium ion concentrations, which do not change noticeably
during the course of an action potential, and used table look-
ups of several model variables, e.g., fully-activated currents,
and steady-state values and time constants of gating variables.
Also, all computations were performed using the 4-byte
“single” variable format of the computer’s floating point unit,
i.e., with a degree of precision of 7–8 decimal figures, instead
of the 10-byte “extended” format.  Using a 60-MHz Pentium
processor computer and a moderately fast A/D-board (Ad-
vantech PCL-718), a time step, ∆t, of 130 µs could be
achieved for the SAN model clamp system.  Using a 90-MHz
Pentium processor computer and a significantly faster A/D-
board (Axon Instruments DigiData 1200), the LR model
clamp system could be run with a time step of 70 µs.  Today,
with increased processor speeds, much shorter time steps are
possible.  At the same time, the number of model cells can be
increased to simulate strands or sheets of cells [19–21, 25].

III. RESULTS

The model clamp system may be used to demonstrate the
role of L-type calcium current (ICa,L) in discontinuous con-
duction.  This is illustrated in Fig. 2, which shows results of a
study in which we pharmacologically modulated ICa,L of an
isolated guinea pig ventricular cell that was the leader
(stimulated) cell of the hybrid cell pair [17].  The follower

cell was the LR model cell.  The size of the real cell was ad-
justed through the factor c1 (Fig. 1) to have the same current
threshold for a 2-ms pulse as the LR model (2.6 nA).  With
the intercellular coupling conductance Gc set to 6.6 nS, the
conduction delay was about 20 ms in control solution.  Re-
ducing ICa,L by application of nifedipine (to the real cell) pro-
duced conduction failure at this value of Gc, while for the
same cell application of isoproterenol, enhancing ICa,L, short-
ened the conduction delay.  Both effects were completely
reversible.  The critical value of Gc for successful conduction
was 6.8±0.1 nS (mean±SEM, n=17) in control solution.
Critical Gc was significantly decreased by 20 nM isoprotere-
nol (5.3±0.2 nS, n=8, p<0.001) and increased by 1 µM
nifedipine (8.8±0.2 nS, n=9, p<0.0001).

IV. CONCLUDING REMARK

In courses on cardiac electrophysiology, the model clamp
system may provide a useful computer tool.  Specifically, it
can be very effective in gaining insight into the mechanisms
of action potential transfer between myocardial cells.
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